References
Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. “Deep Learning with
Differential Privacy.” In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 308–18. CCS
’16. New York, NY, USA: ACM. https://doi.org/10.1145/2976749.2978318.
Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, and Chen Zhu. 2020.
“Headless Horseman: Adversarial Attacks on Transfer Learning
Models.” In 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2020,
Barcelona, Spain, May 4-8, 2020, 3087–91. IEEE. https://doi.org/10.1109/ICASSP40776.2020.9053181.
Adolf, Robert, Saketh Rama, Brandon Reagen, Gu-yeon Wei, and David
Brooks. 2016. “Fathom: Reference Workloads for Modern
Deep Learning Methods.” In 2016 IEEE International Symposium
on Workload Characterization (IISWC), 1–10. IEEE; IEEE. https://doi.org/10.1109/iiswc.2016.7581275.
Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and
Hanna M. Wallach. 2018. “A Reductions Approach to Fair
Classification.” In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
edited by Jennifer G. Dy and Andreas Krause, 80:60–69. Proceedings of
Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/agarwal18a.html.
Agnesina, Anthony, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta,
Austin Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. 2023.
“AutoDMP: Automated Dreamplace-Based Macro Placement.” In
Proceedings of the 2023 International Symposium on Physical
Design, 149–57.
Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. 2007. “Trojan Detection Using
IC Fingerprinting.” In 2007 IEEE Symposium on
Security and Privacy (SP ’07), 29–45. Springer; IEEE. https://doi.org/10.1109/sp.2007.36.
Aledhari, Mohammed, Rehma Razzak, Reza M. Parizi, and Fahad Saeed. 2020.
“Federated Learning: A Survey on Enabling
Technologies, Protocols, and Applications.” #IEEE_O_ACC#
8: 140699–725. https://doi.org/10.1109/access.2020.3013541.
Alghamdi, Wael, Hsiang Hsu, Haewon Jeong, Hao Wang, Peter Michalak,
Shahab Asoodeh, and Flavio Calmon. 2022. “Beyond Adult and
COMPAS: Fair Multi-Class Prediction via
Information Projection.” Adv. Neur. In. 35: 38747–60.
Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022.
“Classifying Mosquito Wingbeat Sound Using
TinyML.” In Proceedings of the 2022 ACM
Conference on Information Technology for Social Good, 132–37. ACM.
https://doi.org/10.1145/3524458.3547258.
Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006.
“Fault Analysis of DPA-Resistant Algorithms.”
In International Workshop on Fault Diagnosis and Tolerance in
Cryptography, 223–36. Springer.
Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan. 2020.
ICML Workshop on Challenges in Deploying and monitoring Machine Learning
Systems.
Antol, Stanislaw, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. 2015.
“VQA: Visual Question Answering.” In 2015
IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015,
2425–33. IEEE Computer Society. https://doi.org/10.1109/ICCV.2015.279.
Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017.
“Understanding the Mirai Botnet.” In 26th USENIX
Security Symposium (USENIX Security 17), 1093–1110.
Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer,
Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and
Gregor Weber. 2020. “Common Voice: A Massively-Multilingual Speech
Corpus.” In Proceedings of the Twelfth Language Resources and
Evaluation Conference, 4218–22. Marseille, France: European
Language Resources Association. https://aclanthology.org/2020.lrec-1.520.
ARM.com. n.d. “The Future Is Being Built on Arm:
Market Diversification Continues to Drive Strong Royalty
and Licensing Growth as Ecosystem Reaches Quarter of a Trillion Chips
Milestone Arm.”
https://www.arm.com/company/news/2023/02/arm-announces-q3-fy22-results.
Asonov, D., and R. Agrawal. 2004. “Keyboard Acoustic
Emanations.” In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004, 3–11. IEEE; IEEE. https://doi.org/10.1109/secpri.2004.1301311.
Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart
Machines with Smarter Ones: How to Extract Meaningful Data
from Machine Learning Classifiers.” Int. J. Secur. Netw.
10 (3): 137. https://doi.org/10.1504/ijsn.2015.071829.
Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ackerman,
Suraj Kapa, Paul A. Friedman, and Peter A. Noseworthy. 2018.
“Noninvasive Assessment of Dofetilide Plasma Concentration Using a
Deep Learning (Neural Network) Analysis of the Surface
Electrocardiogram: A Proof of Concept Study.”
PLoS One 13 (8): e0201059. https://doi.org/10.1371/journal.pone.0201059.
Bains, Sunny. 2020. “The Business of Building Brains.”
Nature Electronics 3 (7): 348–51. https://doi.org/10.1038/s41928-020-0449-1.
Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra Chtouki. 2022.
“How TinyML Can Be Leveraged to Solve Environmental
Problems: A Survey.” In 2022 International
Conference on Innovation and Intelligence for Informatics, Computing,
and Technologies (3ICT), 338–43. IEEE; IEEE. https://doi.org/10.1109/3ict56508.2022.9990661.
Bank, Dor, Noam Koenigstein, and Raja Giryes. 2023.
“Autoencoders.” Machine Learning for Data Science
Handbook: Data Mining and Knowledge Discovery Handbook, 353–74.
Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro
Pellicioli, and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks
to AES.” In 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 7–12. IEEE; IEEE. https://doi.org/10.1109/hst.2010.5513121.
Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. 2019.
The Datacenter as a Computer: Designing Warehouse-Scale
Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01761-2.
Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. “Network Dissection: Quantifying Interpretability of Deep
Visual Representations.” In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, 3319–27. IEEE
Computer Society. https://doi.org/10.1109/CVPR.2017.354.
Beck, Nathaniel, and Simon Jackman. 1998. “Beyond Linearity by
Default: Generalized Additive Models.” Am. J.
Polit. Sci. 42 (2): 596. https://doi.org/10.2307/2991772.
Bender, Emily M., and Batya Friedman. 2018. “Data Statements for
Natural Language Processing: Toward Mitigating System Bias and Enabling
Better Science.” Transactions of the Association for
Computational Linguistics 6: 587–604. https://doi.org/10.1162/tacl\_a\_00041.
Benmeziane, Hadjer, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar,
Martin Wistuba, and Naigang Wang. 2021. “Hardware-Aware Neural
Architecture Search: Survey and Taxonomy.” In
Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, edited by Zhi-Hua Zhou, 4322–29.
International Joint Conferences on Artificial Intelligence Organization.
https://doi.org/10.24963/ijcai.2021/592.
Beyer, Lucas, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and
Aäron van den Oord. 2020. “Are We Done with Imagenet?”
ArXiv Preprint abs/2006.07159. https://arxiv.org/abs/2006.07159.
Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018.
“Practical Black-Box Attacks on Deep Neural Networks Using
Efficient Query Mechanisms.” In Proceedings of the European
Conference on Computer Vision (ECCV), 154–69.
Bhardwaj, Kshitij, Marton Havasi, Yuan Yao, David M Brooks, José Miguel
Hernández-Lobato, and Gu-Yeon Wei. 2020. “A Comprehensive
Methodology to Determine Optimal Coherence Interfaces for
Many-Accelerator SoCs.” In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design,
145–50.
Biega, Asia J., Peter Potash, Hal Daumé III, Fernando Diaz, and Michèle
Finck. 2020. “Operationalizing the Legal Principle of Data
Minimization for Personalization.” In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, edited by Jimmy Huang, Yi
Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun
Liu, 399–408. ACM. https://doi.org/10.1145/3397271.3401034.
Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012.
“Poisoning Attacks Against Support Vector Machines.” In
Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012. icml.cc / Omnipress. http://icml.cc/2012/papers/880.pdf.
Biggs, John, James Myers, Jedrzej Kufel, Emre Ozer, Simon Craske, Antony
Sou, Catherine Ramsdale, Ken Williamson, Richard Price, and Scott White.
2021. “A Natively Flexible 32-Bit Arm Microprocessor.”
Nature 595 (7868): 532–36. https://doi.org/10.1038/s41586-021-03625-w.
Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, et al. 2011. “The Gem5
Simulator.” ACM SIGARCH Computer Architecture News 39
(2): 1–7. https://doi.org/10.1145/2024716.2024718.
Bohr, Adam, and Kaveh Memarzadeh. 2020. “The Rise of Artificial
Intelligence in Healthcare Applications.” In Artificial
Intelligence in Healthcare, 25–60. Elsevier. https://doi.org/10.1016/b978-0-12-818438-7.00002-2.
Bondi, Elizabeth, Ashish Kapoor, Debadeepta Dey, James Piavis, Shital
Shah, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind Tambe.
2018. “Near Real-Time Detection of Poachers from Drones in
AirSim.” In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, edited by Jérôme Lang,
5814–16. ijcai.org. https://doi.org/10.24963/ijcai.2018/847.
Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas
Papernot. 2021. “Machine Unlearning.” In 2021 IEEE
Symposium on Security and Privacy (SP), 141–59. IEEE; IEEE. https://doi.org/10.1109/sp40001.2021.00019.
Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. 2018. “Deeplaser: Practical Fault Attack on Deep
Neural Networks.” ArXiv Preprint abs/1806.05859. https://arxiv.org/abs/1806.05859.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language
Models Are Few-Shot Learners.” In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
Virtual, edited by Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.
Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades:
Intersectional Accuracy Disparities in Commercial Gender
Classification.” In Conference on Fairness, Accountability
and Transparency, 77–91. PMLR.
Burnet, David, and Richard Thomas. 1989. “Spycatcher:
The Commodification of Truth.” J. Law Soc.
16 (2): 210. https://doi.org/10.2307/1410360.
Burr, Geoffrey W., Matthew J. BrightSky, Abu Sebastian, Huai-Yu Cheng,
Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, et al. 2016. “Recent
Progress in Phase-Change<?Pub _Newline ?>Memory Technology.”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 6 (2): 146–62. https://doi.org/10.1109/jetcas.2016.2547718.
Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. 2010.
“Energy-Efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open
Challenges.” https://arxiv.org/abs/1006.0308.
Cai, Han, Chuang Gan, Ligeng Zhu, and Song Han. 2020. “TinyTL:
Reduce Memory, Not Parameters for Efficient on-Device Learning.”
In Advances in Neural Information Processing Systems. Vol. 33.
Cai, Han, Ligeng Zhu, and Song Han. 2019. “ProxylessNAS: Direct
Neural Architecture Search on Target Task and Hardware.” In
7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=HylVB3AqYm.
Calvo, Rafael A, Dorian Peters, Karina Vold, and Richard M Ryan. 2020.
“Supporting Human Autonomy in AI Systems:
A Framework for Ethical Enquiry.” Ethics of
Digital Well-Being: A Multidisciplinary Approach, 31–54.
Cavoukian, Ann. 2009. “Privacy by Design.” Office of
the Information and Privacy Commissioner.
Cenci, Marcelo Pilotto, Tatiana Scarazzato, Daniel Dotto Munchen, Paula
Cristina Dartora, Hugo Marcelo Veit, Andrea Moura Bernardes, and Pablo
R. Dias. 2021. “Eco-Friendly
ElectronicsA Comprehensive Review.”
Adv. Mater. Technol. 7 (2): 2001263. https://doi.org/10.1002/admt.202001263.
Challenge, WEF Net-Zero. 2021. “The Supply Chain
Opportunity.” In World Economic Forum: Geneva,
Switzerland.
Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009.
“Semi-Supervised Learning (Chapelle, O.
Et Al., Eds.; 2006) [Book Reviews].” IEEE Trans.
Neural Networks 20 (3): 542–42. https://doi.org/10.1109/tnn.2009.2015974.
Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan Su. 2019. “This Looks Like That: Deep Learning for
Interpretable Image Recognition.” In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, edited by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, 8928–39. https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.
Chen, Emma, Shvetank Prakash, Vijay Janapa Reddi, David Kim, and Pranav
Rajpurkar. 2023. “A Framework for Integrating Artificial
Intelligence for Clinical Care with Continuous Therapeutic
Monitoring.” Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01115-0.
Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of
Groundwater from a Semiconductor Manufacturing Area of
Taiwan.” B. Environ. Contam. Tox. 77 (2):
289–96. https://doi.org/10.1007/s00128-006-1062-3.
Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, et al. 2018. “TVM:
An Automated End-to-End Optimizing Compiler for Deep
Learning.” In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 578–94.
Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
“Training Deep Nets with Sublinear Memory Cost.” ArXiv
Preprint abs/1604.06174. https://arxiv.org/abs/1604.06174.
Chen, Zhiyong, and Shugong Xu. 2023. “Learning
Domain-Heterogeneous Speaker Recognition Systems with Personalized
Continual Federated Learning.” EURASIP Journal on Audio,
Speech, and Music Processing 2023 (1): 33. https://doi.org/10.1186/s13636-023-00299-2.
Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang. 2018. “Model
Compression and Acceleration for Deep Neural Networks: The
Principles, Progress, and Challenges.” IEEE Signal Process
Mag. 35 (1): 126–36. https://doi.org/10.1109/msp.2017.2765695.
Chi, Ping, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. 2016. “Prime: A Novel Processing-in-Memory
Architecture for Neural Network Computation in ReRAM-Based Main
Memory.” ACM SIGARCH Computer Architecture News 44 (3):
27–39. https://doi.org/10.1145/3007787.3001140.
Chollet, François. 2018. “Introduction to Keras.” March
9th.
Chowdhery, Aakanksha, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. 2019. “Visual Wake Words Dataset.” arXiv
Preprint arXiv:1906.05721.
Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg,
and Dario Amodei. 2017. “Deep Reinforcement Learning from Human
Preferences.” In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, edited
by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, 4299–4307. https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.
Chu, Grace, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. 2021. “Discovering Multi-Hardware Mobile Models via
Architecture Search.” In IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2021, Virtual, June 19-25, 2021, 3022–31. Computer Vision
Foundation / IEEE. https://doi.org/10.1109/CVPRW53098.2021.00337.
Chua, L. 1971. “Memristor-the Missing Circuit Element.”
#IEEE_J_CT# 18 (5): 507–19. https://doi.org/10.1109/tct.1971.1083337.
Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and
Mosharaf Chowdhury. 2023. “Perseus: Removing Energy Bloat from
Large Model Training.” ArXiv Preprint abs/2312.06902. https://arxiv.org/abs/2312.06902.
Cohen, Maxime C., Ruben Lobel, and Georgia Perakis. 2016. “The
Impact of Demand Uncertainty on Consumer Subsidies for Green Technology
Adoption.” Manage. Sci. 62 (5): 1235–58. https://doi.org/10.1287/mnsc.2015.2173.
Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter
Bailis, Alexander C. Berg, Robert D. Nowak, Roshan Sumbaly, Matei
Zaharia, and I. Zeki Yalniz. 2022. “Similarity Search for
Efficient Active Learning and Search of Rare Concepts.” In
Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on
Innovative Applications of Artificial Intelligence, IAAI
2022, the Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022, 6402–10. AAAI Press. https://ojs.aaai.org/index.php/AAAI/article/view/20591.
Coleman, Cody, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao,
Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia.
2019. “Analysis of DAWNBench, a Time-to-Accuracy
Machine Learning Performance Benchmark.” ACM SIGOPS Operating
Systems Review 53 (1): 14–25. https://doi.org/10.1145/3352020.3352024.
Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling, Sebastien
Humbert, and Lindsay Lessard. 2011. “A Semiconductor Company’s
Examination of Its Water Footprint Approach.” In Proceedings
of the 2011 IEEE International Symposium on Sustainable Systems and
Technology, 1–6. IEEE; IEEE. https://doi.org/10.1109/issst.2011.5936865.
Cope, Gord. 2009. “Pure Water, Semiconductors and the
Recession.” Global Water Intelligence 10 (10).
D’ignazio, Catherine, and Lauren F Klein. 2023. Data Feminism.
MIT press.
Dahl, George E, Frank Schneider, Zachary Nado, Naman Agarwal,
Chandramouli Shama Sastry, Philipp Hennig, Sourabh Medapati, et al.
2021. “CSF Findings in Acute NMDAR and
LGI1 AntibodyAssociated
Autoimmune Encephalitis.” Neurology Neuroimmunology &Amp;
Neuroinflammation 8 (6). https://doi.org/10.1212/nxi.0000000000001086.
Darvish Rouhani, Bita, Azalia Mirhoseini, and Farinaz Koushanfar. 2017.
“TinyDL: Just-in-time
Deep Learning Solution for Constrained Embedded Systems.” In
2017 IEEE International Symposium on Circuits and Systems
(ISCAS), 1–4. IEEE. https://doi.org/10.1109/iscas.2017.8050343.
Davarzani, Samaneh, David Saucier, Purva Talegaonkar, Erin Parker, Alana
Turner, Carver Middleton, Will Carroll, et al. 2023. “Closing the
Wearable Gap: Footankle
Kinematic Modeling via Deep Learning Models Based on a Smart Sock
Wearable.” Wearable Technologies 4. https://doi.org/10.1017/wtc.2023.3.
David, Robert, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat
Jeffries, Jian Li, Nick Kreeger, et al. 2021. “Tensorflow Lite
Micro: Embedded Machine Learning for Tinyml
Systems.” Proceedings of Machine Learning and Systems 3:
800–811.
Davies, Emma. 2011. “Endangered Elements: Critical
Thinking.” https://www.rsc.org/images/Endangered\%20Elements\%20-\%20Critical\%20Thinking\_tcm18-196054.pdf.
Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, et al. 2018.
“Loihi: A Neuromorphic Manycore Processor with
on-Chip Learning.” IEEE Micro 38 (1): 82–99. https://doi.org/10.1109/mm.2018.112130359.
Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya,
Gabriel A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R.
Risbud. 2021. “Advancing Neuromorphic Computing with Loihi:
A Survey of Results and Outlook.” Proc.
IEEE 109 (5): 911–34. https://doi.org/10.1109/jproc.2021.3067593.
Davis, Jacqueline, Daniel Bizo, Andy Lawrence, Owen Rogers, and Max
Smolaks. 2022. “Uptime Institute Global Data Center Survey
2022.” Uptime Institute.
Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center
Energy Consumption Modeling: A Survey.” IEEE
Communications Surveys &Amp; Tutorials 18 (1): 732–94. https://doi.org/10.1109/comst.2015.2481183.
Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc
V. Le, Mark Z. Mao, et al. 2012. “Large Scale Distributed Deep
Networks.” In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 1232–40. https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html.
Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li.
2009. “ImageNet: A Large-Scale Hierarchical Image
Database.” In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR
2009), 20-25 June 2009, Miami, Florida, USA, 248–55.
IEEE Computer Society. https://doi.org/10.1109/CVPR.2009.5206848.
Desai, Tanvi, Felix Ritchie, Richard Welpton, et al. 2016. “Five
Safes: Designing Data Access for Research.”
Economics Working Paper Series 1601: 28.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
“BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.” In Proceedings of
the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–86. Minneapolis, Minnesota:
Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1423.
Dhar, Sauptik, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh
Kurup, and Mohak Shah. 2021. “A Survey of on-Device Machine
Learning: An Algorithms and Learning Theory Perspective.” ACM
Transactions on Internet of Things 2 (3): 1–49. https://doi.org/10.1145/3450494.
Dong, Xin, Barbara De Salvo, Meng Li, Chiao Liu, Zhongnan Qu, H. T.
Kung, and Ziyun Li. 2022. “SplitNets: Designing Neural
Architectures for Efficient Distributed Computing on Head-Mounted
Systems.” In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, 12549–59. IEEE. https://doi.org/10.1109/CVPR52688.2022.01223.
Dongarra, Jack J. 2009. “The Evolution of High Performance
Computing on System z.” IBM J. Res. Dev. 53: 3–4.
Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vijay Janapa Reddi. 2022.
“FastML Science Benchmarks: Accelerating
Real-Time Scientific Edge Machine Learning.” ArXiv
Preprint abs/2207.07958. https://arxiv.org/abs/2207.07958.
Duchi, John C., Elad Hazan, and Yoram Singer. 2010. “Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization.” In COLT 2010 - the 23rd
Conference on Learning Theory, Haifa, Israel, June 27-29, 2010,
edited by Adam Tauman Kalai and Mehryar Mohri, 257–69. Omnipress. http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf\#page=265.
Duisterhof, Bardienus P, Srivatsan Krishnan, Jonathan J Cruz, Colby R
Banbury, William Fu, Aleksandra Faust, Guido CHE de Croon, and Vijay
Janapa Reddi. 2019. “Learning to Seek: Autonomous
Source Seeking with Deep Reinforcement Learning Onboard a Nano Drone
Microcontroller.” ArXiv Preprint abs/1909.11236. https://arxiv.org/abs/1909.11236.
Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vijay Janapa
Reddi, and Guido C. H. E. de Croon. 2021. “Sniffy Bug:
A Fully Autonomous Swarm of Gas-Seeking Nano Quadcopters in
Cluttered Environments.” In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 9099–9106.
IEEE; IEEE. https://doi.org/10.1109/iros51168.2021.9636217.
Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006.
“Calibrating Noise to Sensitivity in Private Data
Analysis.” In Theory of Cryptography, edited by Shai
Halevi and Tal Rabin, 265–84. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Foundations
of Differential Privacy.” Foundations and Trends
in Theoretical Computer Science 9 (3-4): 211–407. https://doi.org/10.1561/0400000042.
Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2014. “A
Review of Data Center Cooling Technology, Operating Conditions and the
Corresponding Low-Grade Waste Heat Recovery Opportunities.”
Renewable Sustainable Energy Rev. 31: 622–38. https://doi.org/10.1016/j.rser.2013.12.007.
Eldan, Ronen, and Mark Russinovich. 2023. “Who’s Harry Potter?
Approximate Unlearning in LLMs.” ArXiv
Preprint abs/2310.02238. https://arxiv.org/abs/2310.02238.
Eshraghian, Jason K., Max Ward, Emre O. Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
2023. “Training Spiking Neural Networks Using Lessons from Deep
Learning.” Proc. IEEE 111 (9): 1016–54. https://doi.org/10.1109/jproc.2023.3308088.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. https://doi.org/10.1038/nature21056.
Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017.
“Robust Physical-World Attacks on Deep Learning Models.”
ArXiv Preprint abs/1707.08945. https://arxiv.org/abs/1707.08945.
Fahim, Farah, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo
Jindariani, Nhan Tran, Luca P. Carloni, et al. 2021. “Hls4ml:
An Open-Source Codesign Workflow to Empower Scientific
Low-Power Machine Learning Devices.” https://arxiv.org/abs/2103.05579.
Farah, Martha J. 2005. “Neuroethics: The Practical
and the Philosophical.” Trends Cogn. Sci. 9 (1): 34–40.
https://doi.org/10.1016/j.tics.2004.12.001.
Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the
Future of Cyber War.” Survival 53 (1): 23–40. https://doi.org/10.1080/00396338.2011.555586.
Fowers, Jeremy, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, et al. 2018. “A Configurable
Cloud-Scale DNN Processor for Real-Time
AI.” In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 1–14. IEEE; IEEE. https://doi.org/10.1109/isca.2018.00012.
Frankle, Jonathan, and Michael Carbin. 2019. “The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks.” In
7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=rJl-b3RcF7.
Friedman, Batya. 1996. “Value-Sensitive Design.”
Interactions 3 (6): 16–23. https://doi.org/10.1145/242485.242493.
Furber, Steve. 2016. “Large-Scale Neuromorphic Computing
Systems.” J. Neural Eng. 13 (5): 051001. https://doi.org/10.1088/1741-2560/13/5/051001.
Gale, Trevor, Erich Elsen, and Sara Hooker. 2019. “The State of
Sparsity in Deep Neural Networks.” ArXiv Preprint
abs/1902.09574. https://arxiv.org/abs/1902.09574.
Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001.
“Electromagnetic Analysis: Concrete Results.”
In Cryptographic Hardware and Embedded SystemsCHES
2001: Third International Workshop Paris, France, May 1416,
2001 Proceedings 3, 251–61. Springer.
Gannot, G., and M. Ligthart. 1994. “Verilog HDL Based
FPGA Design.” In International Verilog HDL
Conference, 86–92. IEEE. https://doi.org/10.1109/ivc.1994.323743.
Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical
Unclonable Functions.” Nature Electronics 3 (2): 81–91.
https://doi.org/10.1038/s41928-020-0372-5.
Gates, Byron D. 2009. “Flexible Electronics.”
Science 323 (5921): 1566–67. https://doi.org/10.1126/science.1171230.
Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021.
“Datasheets for Datasets.” Commun. ACM 64 (12):
86–92. https://doi.org/10.1145/3458723.
Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts. 2021.
“Causal Abstractions of Neural Networks.” In Advances
in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 9574–86. https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html.
Gholami, Dong Kim, Mahoney Yao, and Keutzer. 2021. “A Survey of
Quantization Methods for Efficient Neural Network Inference).”
ArXiv Preprint. https://arxiv.org/abs/2103.13630.
Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the
Difficulty of Training Deep Feedforward Neural Networks.” In
Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. https://proceedings.mlr.press/v9/glorot10a.html.
Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017.
“Voltage Drop-Based Fault Attacks on FPGAs Using
Valid Bitstreams.” In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), 1–7. IEEE; IEEE.
https://doi.org/10.23919/fpl.2017.8056840.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020.
“Generative Adversarial Networks.” Commun. ACM 63
(11): 139–44. https://doi.org/10.1145/3422622.
Google. n.d. “Information Quality Content Moderation.” https://blog.google/documents/83/.
Gordon, Ariel, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. 2018. “MorphNet: Fast
&Amp; Simple Resource-Constrained Structure Learning of Deep
Networks.” In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1586–95. IEEE. https://doi.org/10.1109/cvpr.2018.00171.
Greengard, Samuel. 2015. The Internet of Things. The MIT Press.
https://doi.org/10.7551/mitpress/10277.001.0001.
Grossman, Elizabeth. 2007. High Tech Trash: Digital
Devices, Hidden Toxics, and Human Health. Island press.
Gruslys, Audrunas, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. 2016. “Memory-Efficient Backpropagation Through
Time.” In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
4125–33. https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html.
Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu
Medium.” https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453.
Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yunlong Xia,
Li Yan, et al. 2019. “Mobile Photoplethysmographic Technology to
Detect Atrial Fibrillation.” J. Am. Coll. Cardiol. 74
(19): 2365–75. https://doi.org/10.1016/j.jacc.2019.08.019.
Gupta, Maanak, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and
Lopamudra Praharaj. 2023. “From ChatGPT to
ThreatGPT: Impact of Generative
AI in Cybersecurity and Privacy.”
#IEEE_O_ACC# 11: 80218–45. https://doi.org/10.1109/access.2023.3300381.
Gupta, Maya, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin
Canini, Alexander Mangylov, Wojciech Moczydlowski, and Alexander Van
Esbroeck. 2016. “Monotonic Calibrated Interpolated Look-up
Tables.” The Journal of Machine Learning Research 17
(1): 3790–3836.
Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee,
David Brooks, and Carole-Jean Wu. 2022. “Act: Designing
Sustainable Computer Systems with an Architectural Carbon Modeling
Tool.” In Proceedings of the 49th Annual International
Symposium on Computer Architecture, 784–99. ACM. https://doi.org/10.1145/3470496.3527408.
Gwennap, Linley. n.d. “Certus-NX Innovates
General-Purpose FPGAs.”
Haensch, Wilfried, Tayfun Gokmen, and Ruchir Puri. 2019. “The Next
Generation of Deep Learning Hardware: Analog
Computing.” Proc. IEEE 107 (1): 108–22. https://doi.org/10.1109/jproc.2018.2871057.
Han, Song, Huizi Mao, and William J. Dally. 2016. “Deep
Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding.” https://arxiv.org/abs/1510.00149.
Handlin, Oscar. 1965. “Science and Technology in Popular
Culture.” Daedalus-Us., 156–70.
Han, Mao, and Dally. 2015. “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding.” ArXiv
Preprint. https://arxiv.org/abs/1510.00149.
Hardt, Moritz, Eric Price, and Nati Srebro. 2016. “Equality of
Opportunity in Supervised Learning.” In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, edited by Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, 3315–23. https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html.
Hawks, Benjamin, Javier Duarte, Nicholas J. Fraser, Alessandro
Pappalardo, Nhan Tran, and Yaman Umuroglu. 2021. “Ps and Qs:
Quantization-Aware Pruning for Efficient Low Latency Neural Network
Inference.” Frontiers in Artificial Intelligence 4
(July). https://doi.org/10.3389/frai.2021.676564.
Hazan, Avi, and Elishai Ezra Tsur. 2021. “Neuromorphic Analog
Implementation of Neural Engineering Framework-Inspired Spiking Neuron
for High-Dimensional Representation.” Front. Neurosci.
15: 627221. https://doi.org/10.3389/fnins.2021.627221.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification.” In 2015 IEEE
International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, 1026–34. IEEE
Computer Society. https://doi.org/10.1109/ICCV.2015.123.
———. 2016. “Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, 770–78. IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.90.
Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and Guy N.
Rothblum. 2018. “Multicalibration: Calibration for the
(Computationally-Identifiable) Masses.” In Proceedings of the
35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, edited by Jennifer G. Dy and Andreas Krause, 80:1944–53.
Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/hebert-johnson18a.html.
Hegde, Sumant. 2023. “An Introduction to Separable Convolutions -
Analytics Vidhya.” https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-separable-convolutions/.
Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,
and Joelle Pineau. 2020. “Towards the Systematic Reporting of the
Energy and Carbon Footprints of Machine Learning.” The
Journal of Machine Learning Research 21 (1): 10039–81.
Hendrycks, Dan, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn
Song. 2021. “Natural Adversarial Examples.” In
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, Virtual, June 19-25, 2021,
15262–71. Computer Vision Foundation / IEEE. https://doi.org/10.1109/CVPR46437.2021.01501.
Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age
for Computer Architecture.” Commun. ACM 62 (2): 48–60.
https://doi.org/10.1145/3282307.
Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examination
of Stigmatizing Language in the Electronic Health Record.”
JAMA Network Open 5 (1): e2144967. https://doi.org/10.1001/jamanetworkopen.2021.44967.
Hinton, Geoffrey. 2005. “Van Nostrand’s Scientific Encyclopedia.” Wiley.
https://doi.org/10.1002/0471743984.vse0673.
———. 2017. “Overview of Minibatch Gradient Descent.”
University of Toronto; University Lecture.
Ho Yoon, Jung, Hyung-Suk Jung, Min Hwan Lee, Gun Hwan Kim, Seul Ji Song,
Jun Yeong Seok, Kyung Jean Yoon, et al. 2012. “Frontiers in
Electronic Materials.” Wiley. https://doi.org/10.1002/9783527667703.ch67.
Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. 2021. “Sparsity in Deep Learning: Pruning and
Growth for Efficient Inference and Training in Neural Networks.”
https://arxiv.org/abs/2102.00554.
Holland, Sarah, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia
Chmielinski. 2020. “The Dataset Nutrition Label: A Framework to
Drive Higher Data Quality Standards.” In Data Protection and
Privacy. Hart Publishing. https://doi.org/10.5040/9781509932771.ch-001.
Hong, Sanghyun, Nicholas Carlini, and Alexey Kurakin. 2023.
“Publishing Efficient on-Device Models Increases Adversarial
Vulnerability.” In 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), 271–90. IEEE; IEEE. https://doi.org/10.1109/satml54575.2023.00026.
Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
2017. “Deceiving Google’s Perspective Api Built for Detecting
Toxic Comments.” ArXiv Preprint abs/1702.08138. https://arxiv.org/abs/1702.08138.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017.
“MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications.” ArXiv
Preprint. https://arxiv.org/abs/1704.04861.
Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman
Mahmoud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, and Vijay
Janapa Reddi. 2023. “MAVFI: An
End-to-End Fault Analysis Framework with Anomaly Detection and Recovery
for Micro Aerial Vehicles.” In 2023 Design, Automation
&Amp; Test in Europe Conference &Amp; Exhibition (DATE),
1–6. IEEE; IEEE. https://doi.org/10.23919/date56975.2023.10137246.
Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen Chen, Ya-Ting
Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen Chang, Yu-Ting Liu, and
Yu-Min Tzou. 2016. “Accumulation of Heavy Metals and Trace
Elements in Fluvial Sediments Received Effluents from Traditional and
Semiconductor Industries.” Scientific Reports 6 (1):
34250. https://doi.org/10.1038/srep34250.
Hu, Jie, Li Shen, and Gang Sun. 2018. “Squeeze-and-Excitation
Networks.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 7132–41.
Huang, Shihua, Luc Waeijen, and Henk Corporaal. 2022. “How
Flexible Is Your Computing System?” ACM Transactions on
Embedded Computing Systems (TECS) 21 (4): 1–41.
Huang, Tsung-Ching, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh, Tsuyoshi
Sekitani, Takao Someya, and Kwang-Ting Cheng. 2011.
“Pseudo-CMOS: A Design Style for
Low-Cost and Robust Flexible Electronics.” IEEE Trans.
Electron Devices 58 (1): 141–50. https://doi.org/10.1109/ted.2010.2088127.
Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009.
“Contact-Based Fault Injections and Power Analysis on
RFID Tags.” In 2009 European Conference on
Circuit Theory and Design, 409–12. IEEE; IEEE. https://doi.org/10.1109/ecctd.2009.5275012.
Iandola, Forrest N, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. “SqueezeNet:
Alexnet-level Accuracy with 50x Fewer
Parameters and 0.5 MB Model Size.” ArXiv
Preprint abs/1602.07360. https://arxiv.org/abs/1602.07360.
Ignatov, Andrey, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. 2018. “AI Benchmark:
Running Deep Neural Networks on Android
Smartphones,” 0–0.
Imani, Mohsen, Abbas Rahimi, and Tajana S. Rosing. 2016.
“Resistive Configurable Associative Memory for Approximate
Computing.” In Proceedings of the 2016 Design, Automation
&Amp; Test in Europe Conference &Amp; Exhibition (DATE),
1327–32. IEEE; Research Publishing Services. https://doi.org/10.3850/9783981537079\_0454.
IntelLabs. 2023. “Knowledge Distillation - Neural Network
Distiller.” https://intellabs.github.io/distiller/knowledge_distillation.html.
Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew
Jagielski, Katherine Lee, Christopher Choquette Choo, and Nicholas
Carlini. 2023. “Preventing Generation of Verbatim Memorization in
Language Models Gives a False Sense of Privacy.” In
Proceedings of the 16th International Natural Language Generation
Conference, 5253–70. Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.inlg-main.3.
Irimia-Vladu, Mihai. 2014.
““Green” Electronics:
Biodegradable and Biocompatible Materials and Devices for
Sustainable Future.” Chem. Soc. Rev. 43 (2): 588–610. https://doi.org/10.1039/c3cs60235d.
Isscc. 2014. “Computing’s Energy Problem (and What We Can Do about
It).” https://ieeexplore.ieee.org/document/6757323.
Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018.
“Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference.” In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, 2704–13.
IEEE Computer Society. https://doi.org/10.1109/CVPR.2018.00286.
Janapa Reddi, Vijay, Alexander Elium, Shawn Hymel, David Tischler,
Daniel Situnayake, Carl Ward, Louis Moreau, et al. 2023. “Edge
Impulse: An MLOps Platform for Tiny Machine
Learning.” Proceedings of Machine Learning and Systems
5.
Jha, A. R. 2014. Rare Earth Materials: Properties and
Applications. CRC Press. https://doi.org/10.1201/b17045.
Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
“Caffe: Convolutional Architecture for Fast Feature
Embedding.” In Proceedings of the 22nd ACM International
Conference on Multimedia, 675–78. ACM. https://doi.org/10.1145/2647868.2654889.
Jia, Zhe, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza.
2018. “Dissecting the NVIDIA Volta
GPU Architecture via Microbenchmarking.” ArXiv
Preprint. https://arxiv.org/abs/1804.06826.
Jia, Zhenge, Dawei Li, Xiaowei Xu, Na Li, Feng Hong, Lichuan Ping, and
Yiyu Shi. 2023. “Life-Threatening Ventricular Arrhythmia Detection
Challenge in Implantable
Cardioverterdefibrillators.” Nature Machine
Intelligence 5 (5): 554–55. https://doi.org/10.1038/s42256-023-00659-9.
Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2019. “Beyond Data and
Model Parallelism for Deep Neural Networks.” In Proceedings
of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA,
March 31 - April 2, 2019, edited by Ameet Talwalkar, Virginia
Smith, and Matei Zaharia. mlsys.org. https://proceedings.mlsys.org/book/265.pdf.
Jiang, Weiwen, Xinyi Zhang, Edwin H. -M. Sha, Lei Yang, Qingfeng Zhuge,
Yiyu Shi, and Jingtong Hu. 2019. “Accuracy Vs. Efficiency:
Achieving Both Through FPGA-Implementation
Aware Neural Architecture Search.” https://arxiv.org/abs/1901.11211.
Jin, Yilun, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. “Towards
Utilizing Unlabeled Data in Federated Learning: A Survey and
Prospective.” arXiv Preprint arXiv:2002.11545.
Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving in the
Matrix: Can Virtual Worlds Replace Human-Generated
Annotations for Real World Tasks?” In 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/icra.2017.7989092.
Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, et al. 2017a. “In-Datacenter
Performance Analysis of a Tensor Processing Unit.” In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 1–12. ISCA ’17. New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017b. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ISCA ’17.
New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
Jouppi, Norm, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, et al. 2023. “TPU V4:
An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture. ISCA ’23. New York, NY, USA: ACM. https://doi.org/10.1145/3579371.3589350.
Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in
Cryptography. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29656-7.
Kairouz, Peter, Sewoong Oh, and Pramod Viswanath. 2015. “Secure
Multi-Party Differential Privacy.” In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, edited by Corinna Cortes, Neil D. Lawrence, Daniel
D. Lee, Masashi Sugiyama, and Roman Garnett, 2008–16. https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html.
Kao, Sheng-Chun, Geonhwa Jeong, and Tushar Krishna. 2020.
“Confuciux: Autonomous Hardware Resource Assignment for Dnn
Accelerators Using Reinforcement Learning.” In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 622–36. IEEE.
Kao, Sheng-Chun, and Tushar Krishna. 2020. “Gamma: Automating the
Hw Mapping of Dnn Models on Accelerators via Genetic Algorithm.”
In Proceedings of the 39th International Conference on
Computer-Aided Design, 1–9.
Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural Language Models.”
ArXiv Preprint abs/2001.08361. https://arxiv.org/abs/2001.08361.
Karargyris, Alexandros, Renato Umeton, Micah J Sheller, Alejandro
Aristizabal, Johnu George, Anna Wuest, Sarthak Pati, et al. 2023.
“Federated Benchmarking of Medical Artificial Intelligence with
MedPerf.” Nature Machine Intelligence 5
(7): 799–810. https://doi.org/10.1038/s42256-023-00652-2.
Kaur, Harmanpreet, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna M.
Wallach, and Jennifer Wortman Vaughan. 2020. “Interpreting
Interpretability: Understanding Data Scientists’ Use of Interpretability
Tools for Machine Learning.” In CHI ’20:
CHI Conference on Human Factors in Computing Systems,
Honolulu, HI, USA, April 25-30, 2020, edited by Regina Bernhaupt,
Florian ’Floyd’Mueller, David Verweij, Josh Andres, Joanna McGrenere,
Andy Cockburn, Ignacio Avellino, et al., 1–14. ACM. https://doi.org/10.1145/3313831.3376219.
Khan, Mohammad Emtiyaz, and Siddharth Swaroop. 2021.
“Knowledge-Adaptation Priors.” In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 19757–70. https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html.
Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking
Benchmarking in NLP.” In Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 4110–24.
Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.324.
Kim, Been, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James
Wexler, Fernanda B. Viégas, and Rory Sayres. 2018.
“Interpretability Beyond Feature Attribution: Quantitative Testing
with Concept Activation Vectors (TCAV).” In
Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, edited by Jennifer G. Dy and
Andreas Krause, 80:2673–82. Proceedings of Machine Learning Research.
PMLR. http://proceedings.mlr.press/v80/kim18d.html.
Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon, Donguk
Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and Won Kim. 2018.
“Chemical Use in the Semiconductor Manufacturing Industry.”
Int. J. Occup. Env. Heal. 24 (3-4): 109–18. https://doi.org/10.1080/10773525.2018.1519957.
Kingma, Diederik P., and Jimmy Ba. 2015. “Adam: A
Method for Stochastic Optimization.” In 3rd International
Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, edited
by Yoshua Bengio and Yann LeCun. http://arxiv.org/abs/1412.6980.
Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, et al. 2019a. “Spectre Attacks:
Exploiting Speculative Execution.” In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE. https://doi.org/10.1109/sp.2019.00002.
———, et al. 2019b. “Spectre Attacks: Exploiting
Speculative Execution.” In 2019 IEEE Symposium on Security
and Privacy (SP). IEEE. https://doi.org/10.1109/sp.2019.00002.
Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential
Power Analysis.” In Advances in
CryptologyCRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 1519,
1999 Proceedings 19, 388–97. Springer.
Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011.
“Introduction to Differential Power Analysis.” Journal
of Cryptographic Engineering 1 (1): 5–27. https://doi.org/10.1007/s13389-011-0006-y.
Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept Bottleneck
Models.” In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, 119:5338–48. Proceedings of Machine Learning Research.
PMLR. http://proceedings.mlr.press/v119/koh20a.html.
Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, et al. 2021.
“WILDS: A Benchmark of in-the-Wild
Distribution Shifts.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, edited by Marina Meila and Tong
Zhang, 139:5637–64. Proceedings of Machine Learning Research.
PMLR. http://proceedings.mlr.press/v139/koh21a.html.
Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. “Matrix
Factorization Techniques for Recommender Systems.”
Computer 42 (8): 30–37.
Krishna, Adithya, Srikanth Rohit Nudurupati, Chandana D G, Pritesh
Dwivedi, André van Schaik, Mahesh Mehendale, and Chetan Singh Thakur.
2023. “RAMAN: A Re-Configurable and
Sparse TinyML Accelerator for Inference on Edge.” https://arxiv.org/abs/2306.06493.
Krishnamoorthi. 2018. “Quantizing Deep Convolutional Networks for
Efficient Inference: A Whitepaper.” ArXiv
Preprint. https://arxiv.org/abs/1806.08342.
Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022.
“Self-Supervised Learning in Medicine and Healthcare.”
Nat. Biomed. Eng. 6 (12): 1346–52. https://doi.org/10.1038/s41551-022-00914-1.
Krishnan, Srivatsan, Natasha Jaques, Shayegan Omidshafiei, Dan Zhang,
Izzeddin Gur, Vijay Janapa Reddi, and Aleksandra Faust. 2022.
“Multi-Agent Reinforcement Learning for Microprocessor Design
Space Exploration.” https://arxiv.org/abs/2211.16385.
Krishnan, Srivatsan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour,
Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian, et al. 2023.
“ArchGym: An Open-Source Gymnasium for
Machine Learning Assisted Architecture Design.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–16. ACM. https://doi.org/10.1145/3579371.3589049.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural
Networks.” In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 1106–14. https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.
Kung, H. T., Bradley McDanel, and Sai Qian Zhang. 2018. “Packing
Sparse Convolutional Neural Networks for Efficient Systolic Array
Implementations: Column Combining Under Joint
Optimization.” https://arxiv.org/abs/1811.04770.
Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic
Arrays (for VLSI).” In Sparse Matrix Proceedings
1978, 1:256–82. Society for industrial; applied mathematics
Philadelphia, PA, USA.
Kurth, Thorsten, Shashank Subramanian, Peter Harrington, Jaideep Pathak,
Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath, and Anima
Anandkumar. 2023. “FourCastNet:
Accelerating Global High-Resolution Weather Forecasting
Using Adaptive Fourier Neural Operators.” In
Proceedings of the Platform for Advanced Scientific Computing
Conference, 1–11. ACM. https://doi.org/10.1145/3592979.3593412.
Kuzmin, Andrey, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters,
and Tijmen Blankevoort. 2022. “FP8 Quantization:
The Power of the Exponent.” https://arxiv.org/abs/2208.09225.
Kwon, Jisu, and Daejin Park. 2021. “Hardware/Software
Co-Design for TinyML Voice-Recognition Application on
Resource Frugal Edge Devices.” Applied Sciences 11 (22):
11073. https://doi.org/10.3390/app112211073.
Kwon, Sun Hwa, and Lin Dong. 2022. “Flexible Sensors and Machine
Learning for Heart Monitoring.” Nano Energy 102: 107632.
https://doi.org/10.1016/j.nanoen.2022.107632.
Kwon, Young D, Rui Li, Stylianos I Venieris, Jagmohan Chauhan, Nicholas
D Lane, and Cecilia Mascolo. 2023. “TinyTrain:
Deep Neural Network Training at the Extreme Edge.”
ArXiv Preprint abs/2307.09988. https://arxiv.org/abs/2307.09988.
Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018a. “Cmsis-Nn:
Efficient Neural Network Kernels for Arm Cortex-m
Cpus.” ArXiv Preprint abs/1801.06601. https://arxiv.org/abs/1801.06601.
———. 2018b. “CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-m
CPUs.” https://arxiv.org/abs/1801.06601.
Lakkaraju, Himabindu, and Osbert Bastani. 2020. “”How
Do i Fool You?”: Manipulating User Trust via Misleading Black Box
Explanations.” In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, 79–85. ACM. https://doi.org/10.1145/3375627.3375833.
Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger,
Meire Fortunato, Ferran Alet, Suman Ravuri, et al. 2023. “Learning
Skillful Medium-Range Global Weather Forecasting.”
Science, eadi2336. https://doi.org/10.1126/science.adi2336.
Lannelongue, Loı̈c, Jason Grealey, and Michael Inouye. 2021. “Green
Algorithms: Quantifying the Carbon Footprint of Computation.”
Advanced Science 8 (12): 2100707.
LeCun, Yann, John Denker, and Sara Solla. 1989. “Optimal Brain
Damage.” Adv Neural Inf Process Syst 2.
LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems
& Global Climate Change.” Pew Center on Global Climate
Change.
Li, En, Liekang Zeng, Zhi Zhou, and Xu Chen. 2020. “Edge
AI: On-demand Accelerating Deep
Neural Network Inference via Edge Computing.” IEEE Trans.
Wireless Commun. 19 (1): 447–57. https://doi.org/10.1109/twc.2019.2946140.
Li, Jingzhen, Igbe Tobore, Yuhang Liu, Abhishek Kandwal, Lei Wang, and
Zedong Nie. 2021. “Non-Invasive Monitoring of Three Glucose Ranges
Based on ECG by Using
DBSCAN-CNN.” #IEEE_J_BHI# 25
(9): 3340–50. https://doi.org/10.1109/jbhi.2021.3072628.
Li, Mu, David G. Andersen, Alexander J. Smola, and Kai Yu. 2014.
“Communication Efficient Distributed Machine Learning with the
Parameter Server.” In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, 19–27. https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html.
Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
“Federated Learning: Challenges, Methods, and Future
Directions.” IEEE Signal Process Mag. 37 (3): 50–60. https://doi.org/10.1109/msp.2020.2975749.
Li, Xiang, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. “LightRNN:
Memory and Computation-Efficient Recurrent Neural Networks.” In
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, 4385–93. https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html.
Li, Yuhang, Xin Dong, and Wei Wang. 2020. “Additive Powers-of-Two
Quantization: An Efficient Non-Uniform Discretization for Neural
Networks.” In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=BkgXT24tDS.
Li, Zhizhong, and Derek Hoiem. 2018. “Learning Without
Forgetting.” IEEE Trans. Pattern Anal. Mach. Intell. 40
(12): 2935–47. https://doi.org/10.1109/tpami.2017.2773081.
Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
2020. “MCUNet: Tiny Deep Learning on IoT Devices.” In
Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, Virtual, edited by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin. https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. “On-Device Training Under 256kb Memory.”
Adv. Neur. In. 35: 22941–54.
Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014.
“Microsoft Coco: Common Objects in Context.” In
Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part v 13, 740–55.
Springer.
Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial
Intelligence. Edward Elgar Publishing.
Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. 2008.
“NVIDIA Tesla: A Unified Graphics and
Computing Architecture.” IEEE Micro 28 (2): 39–55. https://doi.org/10.1109/mm.2008.31.
Lin, Tang Tang, Dang Yang, and Han Gan. 2023. “AWQ:
Activation-aware Weight Quantization for
LLM Compression and Acceleration.” ArXiv
Preprint. https://arxiv.org/abs/2306.00978.
Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian.
2020. “Energy Consumption and Emission Mitigation Prediction Based
on Data Center Traffic and PUE for Global Data
Centers.” Global Energy Interconnection 3 (3): 272–82.
https://doi.org/10.1016/j.gloei.2020.07.008.
Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al. 2022.
“Monitoring Gait at Home with Radio Waves in
Parkinson’s Disease: A Marker of Severity,
Progression, and Medication Response.” Sci. Transl. Med.
14 (663): eadc9669. https://doi.org/10.1126/scitranslmed.adc9669.
Loh, Gabriel H. 2008. “3D-Stacked Memory
Architectures for Multi-Core Processors.” ACM SIGARCH
Computer Architecture News 36 (3): 453–64. https://doi.org/10.1145/1394608.1382159.
Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013.
“Accurate Intelligible Models with Pairwise Interactions.”
In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, edited by Inderjit S.
Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh
Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy, 623–31.
ACM. https://doi.org/10.1145/2487575.2487579.
Lowy, Andrew, Rakesh Pavan, Sina Baharlouei, Meisam Razaviyayn, and
Ahmad Beirami. 2021. “Fermi: Fair Empirical Risk
Minimization via Exponential Rényi Mutual Information.”
Luebke, David. 2008. “CUDA: Scalable
Parallel Programming for High-Performance Scientific Computing.”
In 2008 5th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 836–38. IEEE. https://doi.org/10.1109/isbi.2008.4541126.
Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, edited by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, 4765–74. https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
Maass, Wolfgang. 1997. “Networks of Spiking Neurons:
The Third Generation of Neural Network Models.”
Neural Networks 10 (9): 1659–71. https://doi.org/10.1016/s0893-6080(97)00011-7.
Marković, Danijela, Alice Mizrahi, Damien Querlioz, and Julie Grollier.
2020. “Physics for Neuromorphic Computing.” Nature
Reviews Physics 2 (9): 499–510. https://doi.org/10.1038/s42254-020-0208-2.
Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking
Machine.” Commun. ACM 36 (4): 120–33. https://doi.org/10.1145/255950.153587.
Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, et al. 2023.
“Artificial Intelligence Index Report 2023.” ArXiv
Preprint abs/2310.03715. https://arxiv.org/abs/2310.03715.
Mattson, Peter, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, et al. 2020a.
“MLPerf: An Industry Standard Benchmark
Suite for Machine Learning Performance.” IEEE Micro 40
(2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
———, et al. 2020b. “MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance.”
IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
McCarthy, John. 1981. “Epistemological Problems of Artificial
Intelligence.” In Readings in Artificial Intelligence,
459–65. Elsevier. https://doi.org/10.1016/b978-0-934613-03-3.50035-0.
McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL,
USA, edited by Aarti Singh and Xiaojin (Jerry) Zhu,
54:1273–82. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v54/mcmahan17a.html.
Miller, Charlie. 2019. “Lessons Learned from Hacking a
Car.” IEEE Design &Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.2863106.
Miller, Charlie, and Chris Valasek. 2015. “Remote Exploitation of
an Unaltered Passenger Vehicle.” Black Hat USA 2015 (S
91): 1–91.
Miller, D. A. B. 2000. “Optical Interconnects to Silicon.”
#IEEE_J_JSTQE# 6 (6): 1312–17. https://doi.org/10.1109/2944.902184.
Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of
Semiconductor Photocatalysis.” J. Photochem. Photobiol.,
A 108 (1): 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.
Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, et al. 2021. “A Graph
Placement Methodology for Fast Chip Design.” Nature 594
(7862): 207–12.
Mishra, Asit K., Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan
Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. 2021.
“Accelerating Sparse Deep Neural Networks.” CoRR
abs/2104.08378. https://arxiv.org/abs/2104.08378.
Mittal, Sparsh, Gaurav Verma, Brajesh Kaushik, and Farooq A. Khanday.
2021. “A Survey of SRAM-Based in-Memory Computing
Techniques and Applications.” J. Syst. Architect. 119:
102276. https://doi.org/10.1016/j.sysarc.2021.102276.
Modha, Dharmendra S., Filipp Akopyan, Alexander Andreopoulos,
Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta,
et al. 2023. “Neural Inference at the Frontier of Energy, Space,
and Time.” Science 382 (6668): 329–35. https://doi.org/10.1126/science.adh1174.
Monyei, Chukwuka G., and Kirsten E. H. Jenkins. 2018. “Electrons
Have No Identity: Setting Right Misrepresentations in
Google and Apple’s Clean Energy Purchasing.”
Energy Research &Amp; Social Science 46: 48–51. https://doi.org/10.1016/j.erss.2018.06.015.
Moshawrab, Mohammad, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim,
and Ali Raad. 2023. “Reviewing Federated Learning Aggregation
Algorithms; Strategies, Contributions, Limitations and Future
Perspectives.” Electronics 12 (10): 2287. https://doi.org/10.3390/electronics12102287.
Munshi, Aaftab. 2009. “The OpenCL
Specification.” In 2009 IEEE Hot Chips 21 Symposium
(HCS), 1–314. IEEE. https://doi.org/10.1109/hotchips.2009.7478342.
Musk, Elon et al. 2019. “An Integrated Brain-Machine Interface
Platform with Thousands of Channels.” J. Med. Internet
Res. 21 (10): e16194. https://doi.org/10.2196/16194.
Nakano, Jane. 2021. The Geopolitics of Critical Minerals Supply
Chains. JSTOR.
Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break
Anonymity of the Netflix Prize Dataset.” arXiv Preprint
Cs/0610105.
Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Maggie Shen
Qiao. 2021. “AI Literacy: Definition,
Teaching, Evaluation and Ethical Issues.” Proceedings of the
Association for Information Science and Technology 58 (1): 504–9.
Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The
Alignment Problem from a Deep Learning Perspective.” ArXiv
Preprint abs/2209.00626. https://arxiv.org/abs/2209.00626.
Nguyen, Ngoc-Bao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and
Ngai-Man Cheung. 2023. “Re-Thinking Model Inversion Attacks
Against Deep Neural Networks.” In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 16384–93. IEEE. https://doi.org/10.1109/cvpr52729.2023.01572.
Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li,
James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
“The Design Process for Google’s Training Chips:
Tpuv2 and TPUv3.” IEEE Micro
41 (2): 56–63. https://doi.org/10.1109/mm.2021.3058217.
Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021.
“Pervasive Label Errors in Test Sets Destabilize Machine Learning
Benchmarks.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2103.14749
arXiv-issued DOI via DataCite.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019. “Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53. https://doi.org/10.1126/science.aax2342.
OECD. 2023. “A Blueprint for Building National Compute Capacity
for Artificial Intelligence,” no. 350. https://doi.org/https://doi.org/https://doi.org/10.1787/876367e3-en.
Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. 2020. “Zoom in: An
Introduction to Circuits.” Distill 5 (3): e00024–001. https://doi.org/10.23915/distill.00024.001.
Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber. 2023. “I Know
What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences.” ACM Comput. Surv. 55
(14s): 1–41. https://doi.org/10.1145/3595292.
Ooko, Samson Otieno, Marvin Muyonga Ogore, Jimmy Nsenga, and Marco
Zennaro. 2021. “TinyML in Africa:
Opportunities and Challenges.” In 2021 IEEE
Globecom Workshops (GC Wkshps), 1–6. IEEE; IEEE. https://doi.org/10.1109/gcwkshps52748.2021.9682107.
Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022.
“Poisoning Attacks Against Machine Learning: Can
Machine Learning Be Trustworthy?” Computer 55 (11):
94–99. https://doi.org/10.1109/mc.2022.3190787.
Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer
Learning.” IEEE Trans. Knowl. Data Eng. 22 (10):
1345–59. https://doi.org/10.1109/tkde.2009.191.
Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max
Bartolo, Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler:
A Data-Centric Challenge for Improving the Safety of
Text-to-Image Models.” ArXiv Preprint abs/2305.14384. https://arxiv.org/abs/2305.14384.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In
Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, edited by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
B. Fox, and Roman Garnett, 8024–35. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.
Patterson, David A, and John L Hennessy. 2016. Computer Organization
and Design ARM Edition: The Hardware Software
Interface. Morgan kaufmann.
Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and
Jeff Dean. 2022. “The Carbon Footprint of Machine Learning
Training Will Plateau, Then Shrink.” Computer 55 (7):
18–28. https://doi.org/10.1109/mc.2022.3148714.
Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018.
“Designing for Motivation, Engagement and Wellbeing in Digital
Experience.” Front. Psychol. 9: 797. https://doi.org/10.3389/fpsyg.2018.00797.
Phillips, P Jonathon, Carina A Hahn, Peter C Fontana, David A
Broniatowski, and Mark A Przybocki. 2020. “Four Principles of
Explainable Artificial Intelligence.” Gaithersburg,
Maryland 18.
Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan
V. Green, Pete Warden, Tim Ansell, and Vijay Janapa Reddi. 2022.
“CFU Playground: Full-stack Open-Source Framework for Tiny Machine
Learning (TinyML) Acceleration on
FPGAs.” In ArXiv Preprint. Vol.
abs/2201.01863. https://arxiv.org/abs/2201.01863.
Prakash, Shvetank, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete
Warden, Brian Plancher, and Vijay Janapa Reddi. 2023. “Is
TinyML Sustainable? Assessing the Environmental Impacts of
Machine Learning on Microcontrollers.” ArXiv Preprint.
https://arxiv.org/abs/2301.11899.
Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin
Biosensors for Diabetes Management: Advances and
Challenges.” Biosensors 13 (7): 719. https://doi.org/10.3390/bios13070719.
Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022.
“Data Cards: Purposeful and Transparent Dataset
Documentation for Responsible AI.” In 2022 ACM
Conference on Fairness, Accountability, and Transparency. ACM. https://doi.org/10.1145/3531146.3533231.
Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, et al. 2014. “A
Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services.” ACM SIGARCH Computer Architecture News 42
(3): 13–24. https://doi.org/10.1145/2678373.2665678.
Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing Liang,
and Honggang Zhang. 2021. “An Efficient Pruning Scheme of Deep
Neural Networks for Internet of Things Applications.” EURASIP
Journal on Advances in Signal Processing 2021 (1). https://doi.org/10.1186/s13634-021-00744-4.
Qian, Yu, Xuegong Zhou, Hao Zhou, and Lingli Wang. 2023. “An
Efficient Reinforcement Learning Based Framework for Exploring Logic
Synthesis.” ACM Trans. Des. Autom. Electron. Syst.,
November. https://doi.org/10.1145/3632174.
R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded
Applications - a Review.” In 2018 Second International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), 291–98. IEEE. https://doi.org/10.1109/iceca.2018.8474730.
Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. 2009. “Large-Scale
Deep Unsupervised Learning Using Graphics Processors.” In
Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18,
2009, edited by Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael
L. Littman, 382:873–80. ACM International Conference
Proceeding Series. ACM. https://doi.org/10.1145/1553374.1553486.
Ramaswamy, Vikram V., Sunnie S. Y. Kim, Ruth Fong, and Olga Russakovsky.
2023a. “Overlooked Factors in Concept-Based Explanations:
Dataset Choice, Concept Learnability, and Human
Capability.” In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 10932–41. IEEE. https://doi.org/10.1109/cvpr52729.2023.01052.
Ramaswamy, Vikram V, Sunnie SY Kim, Ruth Fong, and Olga Russakovsky.
2023b. “UFO: A Unified Method for
Controlling Understandability and Faithfulness Objectives in
Concept-Based Explanations for CNNs.” ArXiv
Preprint abs/2303.15632. https://arxiv.org/abs/2303.15632.
Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali Ahmed,
James Legg, and David P. Hughes. 2017. “Deep Learning for
Image-Based Cassava Disease Detection.” Front. Plant
Sci. 8: 1852. https://doi.org/10.3389/fpls.2017.01852.
Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. 2021. “Zero-Shot
Text-to-Image Generation.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, edited by Marina Meila and Tong
Zhang, 139:8821–31. Proceedings of Machine Learning Research.
PMLR. http://proceedings.mlr.press/v139/ramesh21a.html.
Ranganathan, Parthasarathy. 2011. “From Microprocessors to
Nanostores: Rethinking Data-Centric Systems.”
Computer 44 (1): 39–48. https://doi.org/10.1109/mc.2011.18.
Rao, Ravi. 2021. Www.wevolver.com. https://www.wevolver.com/article/tinyml-unlocks-new-possibilities-for-sustainable-development-technologies.
Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and
Christopher Ré. 2018. “Snorkel MeTaL: Weak
Supervision for Multi-Task Learning.” In Proceedings of the
Second Workshop on Data Management for End-to-End Machine Learning.
ACM. https://doi.org/10.1145/3209889.3209898.
Reagen, Brandon, José Miguel Hernández-Lobato, Robert Adolf, Michael
Gelbart, Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. “A
Case for Efficient Accelerator Design Space Exploration via Bayesian
Optimization.” In 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), 1–6. IEEE.
Reddi, Vijay Janapa, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, et al. 2020.
“MLPerf Inference Benchmark.” In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), 446–59. IEEE; IEEE. https://doi.org/10.1109/isca45697.2020.00045.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016.
“” Why Should i Trust You?” Explaining
the Predictions of Any Classifier.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1135–44.
Robbins, Herbert, and Sutton Monro. 1951. “A Stochastic
Approximation Method.” The Annals of Mathematical
Statistics 22 (3): 400–407. https://doi.org/10.1214/aoms/1177729586.
Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Bjorn Ommer. 2022. “High-Resolution Image Synthesis with Latent
Diffusion Models.” In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/10.1109/cvpr52688.2022.01042.
Rosa, G. H. de, and J. P. Papa. 2021. “A Survey on Text Generation
Using Generative Adversarial Networks.” Pattern
Recognition. https://doi.org/10.1016/j.patcog.2021.108098.
Rosenblatt, Frank. 1957. The Perceptron, a Perceiving and
Recognizing Automaton Project Para. Cornell Aeronautical
Laboratory.
Roskies, Adina. 2002. “Neuroethics for the New Millenium.”
Neuron 35 (1): 21–23. https://doi.org/10.1016/s0896-6273(02)00763-8.
Ruder, Sebastian. 2016. “An Overview of Gradient Descent
Optimization Algorithms.” ArXiv Preprint abs/1609.04747.
https://arxiv.org/abs/1609.04747.
Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-x.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
“Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, et al. 2015. “Imagenet Large Scale Visual
Recognition Challenge.” International Journal of Computer
Vision 115: 211–52.
Russell, Stuart. 2021. “Human-Compatible Artificial
Intelligence.” Human-Like Machine Intelligence, 3–23.
Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination
Theory and the Facilitation of Intrinsic Motivation, Social Development,
and Well-Being.” Am. Psychol. 55 (1): 68–78. https://doi.org/10.1037/0003-066x.55.1.68.
Samajdar, Ananda, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. “Scale-Sim: Systolic Cnn Accelerator
Simulator.” ArXiv Preprint abs/1811.02883. https://arxiv.org/abs/1811.02883.
———. 2021b. “‘Everyone Wants to Do the Model Work, Not the
Data Work’: Data Cascades in High-Stakes AI.” In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. CHI ’21. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/3411764.3445518.
Schäfer, Mike S. 2023. “The Notorious GPT:
Science Communication in the Age of Artificial
Intelligence.” Journal of Science Communication 22 (02):
Y02. https://doi.org/10.22323/2.22020402.
Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker
Mitchell, Prasanna Date, and Bill Kay. 2022. “Opportunities for
Neuromorphic Computing Algorithms and Applications.” Nature
Computational Science 2 (1): 10–19. https://doi.org/10.1038/s43588-021-00184-y.
Schwartz, Daniel, Jonathan Michael Gomes Selman, Peter Wrege, and
Andreas Paepcke. 2021. “Deployment of Embedded
Edge-AI for Wildlife Monitoring in Remote Regions.”
In 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), 1035–42. IEEE; IEEE. https://doi.org/10.1109/icmla52953.2021.00170.
Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
“Green AI.” Commun. ACM 63 (12):
54–63. https://doi.org/10.1145/3381831.
Segal, Mark, and Kurt Akeley. 1999. “The OpenGL
Graphics System: A Specification (Version 1.1).”
Segura Anaya, L. H., Abeer Alsadoon, N. Costadopoulos, and P. W. C.
Prasad. 2017. “Ethical Implications of User Perceptions of
Wearable Devices.” Sci. Eng. Ethics 24 (1): 1–28. https://doi.org/10.1007/s11948-017-9872-8.
Seide, Frank, and Amit Agarwal. 2016. “Cntk: Microsoft’s
Open-Source Deep-Learning Toolkit.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2135–35. ACM. https://doi.org/10.1145/2939672.2945397.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization.”
In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, 618–26.
IEEE Computer Society. https://doi.org/10.1109/ICCV.2017.74.
Seyedzadeh, Saleh, Farzad Pour Rahimian, Ivan Glesk, and Marc Roper.
2018. “Machine Learning for Estimation of Building Energy
Consumption and Performance: A Review.”
Visualization in Engineering 6 (1): 1–20. https://doi.org/10.1186/s40327-018-0064-7.
Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017. “On
a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv
Preprint abs/1708.06374. https://arxiv.org/abs/1708.06374.
Shan, Shawn, Wenxin Ding, Josephine Passananti, Haitao Zheng, and Ben Y
Zhao. 2023. “Prompt-Specific Poisoning Attacks on Text-to-Image
Generative Models.” ArXiv Preprint abs/2310.13828. https://arxiv.org/abs/2310.13828.
Shastri, Bhavin J., Alexander N. Tait, T. Ferreira de Lima, Wolfram H.
P. Pernice, Harish Bhaskaran, C. D. Wright, and Paul R. Prucnal. 2021.
“Photonics for Artificial Intelligence and Neuromorphic
Computing.” Nat. Photonics 15 (2): 102–14. https://doi.org/10.1038/s41566-020-00754-y.
Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and
William Lintner. 2016. “United States Data Center Energy Usage
Report.”
Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2019. “Q-BERT:
Hessian Based Ultra Low Precision Quantization of
BERT.” CoRR abs/1909.05840. http://arxiv.org/abs/1909.05840.
Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with
Crowdsourcing: A Brief Summary of the Past Research and
Future Directions.” In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, the
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, the Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, 9837–43. AAAI Press. https://doi.org/10.1609/aaai.v33i01.33019837.
Shi, Hongrui, and Valentin Radu. 2022. “Data Selection for
Efficient Model Update in Federated Learning.” In Proceedings
of the 2nd European Workshop on Machine Learning and Systems,
72–78. ACM. https://doi.org/10.1145/3517207.3526980.
Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy Human-Centered
AI Systems.” ACM Transactions on Interactive Intelligent
Systems 10 (December): 1–31. https://doi.org/10.1145/3419764.
———. 2022. Human-Centered AI. Oxford University
Press.
Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. “Membership Inference Attacks Against Machine Learning
Models.” In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE; IEEE. https://doi.org/10.1109/sp.2017.41.
Siddik, Md Abu Bakar, Arman Shehabi, and Landon Marston. 2021.
“The Environmental Footprint of Data Centers in the United
States.” Environ. Res. Lett. 16 (6): 064017. https://doi.org/10.1088/1748-9326/abfba1.
Silvestro, Daniele, Stefano Goria, Thomas Sterner, and Alexandre
Antonelli. 2022. “Improving Biodiversity Protection Through
Artificial Intelligence.” Nature Sustainability 5 (5):
415–24. https://doi.org/10.1038/s41893-022-00851-6.
Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling
the Worldwide Web of e-Waste and Climate Change Co-Benefits.”
Circular Economy 1 (2): 100011. https://doi.org/10.1016/j.cec.2022.100011.
Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory
Devices.” In 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, 1–6. IEEE; IEEE. https://doi.org/10.1109/hst.2009.5225028.
Skorobogatov, Sergei P, and Ross J Anderson. 2003. “Optical Fault
Induction Attacks.” In Cryptographic Hardware and Embedded
Systems-CHES 2002: 4th International Workshop Redwood Shores, CA, USA,
August 1315, 2002 Revised Papers 4, 2–12. Springer.
Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. “Smoothgrad: Removing Noise by
Adding Noise.” ArXiv Preprint abs/1706.03825. https://arxiv.org/abs/1706.03825.
Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. 2012.
“Practical Bayesian Optimization of Machine Learning
Algorithms.” In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 2960–68. https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html.
Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting.” J. Mach.
Learn. Res. http://jmlr.org/papers/v15/srivastava14a.html.
STM32L4Q5AG. 2021. STMicroelectronics.
Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “Energy
and Policy Considerations for Deep Learning in NLP.”
In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 3645–50. Florence, Italy: Association
for Computational Linguistics. https://doi.org/10.18653/v1/P19-1355.
Suda, Naveen, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016.
“Throughput-Optimized OpenCL-Based FPGA
Accelerator for Large-Scale Convolutional Neural Networks.” In
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 16–25. ACM. https://doi.org/10.1145/2847263.2847276.
Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023. “Data
Centers on Wheels: Emissions from Computing Onboard
Autonomous Vehicles.” IEEE Micro 43 (1): 29–39. https://doi.org/10.1109/mm.2022.3219803.
Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017.
“Efficient Processing of Deep Neural Networks: A
Tutorial and Survey.” Proc. IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014.
“Intriguing Properties of Neural Networks.” In 2nd
International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, edited by Yoshua Bengio and Yann LeCun. http://arxiv.org/abs/1312.6199.
Tan, Mingxing, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. 2019. “MnasNet: Platform-Aware
Neural Architecture Search for Mobile.” In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, 2820–28. Computer
Vision Foundation / IEEE. https://doi.org/10.1109/CVPR.2019.00293.
Tan, Mingxing, and Quoc V. Le. 2023. “Demystifying Deep
Learning.” Wiley. https://doi.org/10.1002/9781394205639.ch6.
Tang, Xin, Yichun He, and Jia Liu. 2022. “Soft Bioelectronics for
Cardiac Interfaces.” Biophysics Reviews 3 (1). https://doi.org/10.1063/5.0069516.
Tang, Xin, Hao Shen, Siyuan Zhao, Na Li, and Jia Liu. 2023.
“Flexible Braincomputer Interfaces.”
Nature Electronics 6 (2): 109–18. https://doi.org/10.1038/s41928-022-00913-9.
Tarun, Ayush K, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli. 2022. “Deep Regression Unlearning.” ArXiv
Preprint abs/2210.08196. https://arxiv.org/abs/2210.08196.
Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad
Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, et
al. 2016. “Theano: A Python Framework for Fast
Computation of Mathematical Expressions.” https://arxiv.org/abs/1605.02688.
“The Ultimate Guide to Deep Learning Model Quantization and
Quantization-Aware Training.” n.d. https://deci.ai/quantization-and-quantization-aware-training/.
Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F.
Manso. 2021. “Deep Learning’s Diminishing Returns:
The Cost of Improvement Is Becoming Unsustainable.”
IEEE Spectr. 58 (10): 50–55. https://doi.org/10.1109/mspec.2021.9563954.
Till, Aaron, Andrew L. Rypel, Andrew Bray, and Samuel B. Fey. 2019.
“Fish Die-Offs Are Concurrent with Thermal Extremes in North
Temperate Lakes.” Nat. Clim. Change 9 (8): 637–41. https://doi.org/10.1038/s41558-019-0520-y.
Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S. Kanwar.
2022. “Indonesia Rice Irrigation System:
Time for Innovation.” Sustainability 14
(19): 12477. https://doi.org/10.3390/su141912477.
Tokui, Seiya, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa,
Shunta Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki
Yamazaki Vincent. 2019. “Chainer: A Deep Learning Framework for
Accelerating the Research Cycle.” In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &Amp;
Data Mining, 5:1–6. ACM. https://doi.org/10.1145/3292500.3330756.
Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan
Boneh. 2019. “AdVersarial: Perceptual Ad Blocking
Meets Adversarial Machine Learning.” In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
2005–21. ACM. https://doi.org/10.1145/3319535.3354222.
Uddin, Mueen, and Azizah Abdul Rahman. 2012. “Energy Efficiency
and Low Carbon Enabler Green IT Framework for Data Centers
Considering Green Metrics.” Renewable Sustainable Energy
Rev. 16 (6): 4078–94. https://doi.org/10.1016/j.rser.2012.03.014.
Un, and World Economic Forum. 2019. A New Circular Vision for
Electronics, Time for a Global Reboot. PACE - Platform for
Accelerating the Circular Economy. https://www3.weforum.org/docs/WEF\_A\_New\_Circular\_Vision\_for\_Electronics.pdf.
Valenzuela, Christine L, and Pearl Y Wang. 2000. “A Genetic
Algorithm for VLSI Floorplanning.” In Parallel Problem
Solving from Nature PPSN VI: 6th International Conference Paris, France,
September 18–20, 2000 Proceedings 6, 671–80. Springer.
Van Noorden, Richard. 2016. “ArXiv Preprint Server
Plans Multimillion-Dollar Overhaul.” Nature 534 (7609):
602–2. https://doi.org/10.1038/534602a.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, edited by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
———. 2023. “Attention Is All You Need.” https://arxiv.org/abs/1706.03762.
“Vector-Borne Diseases.” n.d.
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
Verma, Naveen, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay,
Lung-Yen Chen, Bonan Zhang, and Peter Deaville. 2019. “In-Memory
Computing: Advances and Prospects.” IEEE
Solid-State Circuits Mag. 11 (3): 43–55. https://doi.org/10.1109/mssc.2019.2922889.
Verma, Team Dual_Boot: Swapnil. 2022. “Elephant
AI.” Hackster.io. https://www.hackster.io/dual\_boot/elephant-ai-ba71e9.
Vinuesa, Ricardo, Hossein Azizpour, Iolanda Leite, Madeline Balaam,
Virginia Dignum, Sami Domisch, Anna Felländer, Simone Daniela Langhans,
Max Tegmark, and Francesco Fuso Nerini. 2020. “The Role of
Artificial Intelligence in Achieving the Sustainable Development
Goals.” Nat. Commun. 11 (1): 1–10. https://doi.org/10.1038/s41467-019-14108-y.
Vivet, Pascal, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Cesar
Fuguet, Ivan Miro-Panades, Guillaume Moritz, et al. 2021.
“IntAct: A 96-Core Processor with Six
Chiplets 3D-Stacked on an Active Interposer with
Distributed Interconnects and Integrated Power Management.”
IEEE J. Solid-State Circuits 56 (1): 79–97. https://doi.org/10.1109/jssc.2020.3036341.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.”
SSRN Electronic Journal 31: 841. https://doi.org/10.2139/ssrn.3063289.
Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor
Manufacturing: An Introduction to Processes and
Hazards.” Am. J. Ind. Med. 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.
Wang, LingFeng, and YaQing Zhan. 2019. “A Conceptual Peer Review
Model for arXiv and Other Preprint
Databases.” Learn. Publ. 32 (3): 213–19. https://doi.org/10.1002/leap.1229.
Wang, Tianzhe, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang,
Yujun Lin, and Song Han. 2020. “APQ: Joint Search for
Network Architecture, Pruning and Quantization Policy.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, 2075–84. IEEE. https://doi.org/10.1109/CVPR42600.2020.00215.
Warden, Pete. 2018. “Speech Commands: A Dataset for
Limited-Vocabulary Speech Recognition.” arXiv Preprint
arXiv:1804.03209.
Warden, Pete, and Daniel Situnayake. 2019. Tinyml:
Machine Learning with Tensorflow Lite on Arduino and
Ultra-Low-Power Microcontrollers. O’Reilly Media.
Weik, Martin H. 1955. A Survey of Domestic Electronic Digital
Computing Systems. Ballistic Research Laboratories.
Wiener, Norbert. 1960. “Some Moral and Technical Consequences of
Automation: As Machines Learn They May Develop Unforeseen Strategies at
Rates That Baffle Their Programmers.” Science 131
(3410): 1355–58. https://doi.org/10.1126/science.131.3410.1355.
Winkler, Harald, Franck Lecocq, Hans Lofgren, Maria Virginia Vilariño,
Sivan Kartha, and Joana Portugal-Pereira. 2022. “Examples of
Shifting Development Pathways: Lessons on How to Enable
Broader, Deeper, and Faster Climate Action.” Climate
Action 1 (1). https://doi.org/10.1007/s44168-022-00026-1.
Wong, H.-S. Philip, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu,
Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai.
2012. “MetalOxide
RRAM.” Proc. IEEE 100 (6): 1951–70. https://doi.org/10.1109/jproc.2012.2190369.
Wu, Bichen, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019.
“FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search.” In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, 10734–42. Computer Vision
Foundation / IEEE. https://doi.org/10.1109/CVPR.2019.01099.
Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, et al. 2022. “Sustainable Ai:
Environmental Implications, Challenges and
Opportunities.” Proceedings of Machine Learning and
Systems 4: 795–813.
Wu, Zhang Judd, and Micikevicius Isaev. 2020. “Integer
Quantization for Deep Learning Inference: Principles and
Empirical Evaluation).” ArXiv Preprint. https://arxiv.org/abs/2004.09602.
Xiao, Seznec Lin, Demouth Wu, and Han. 2022.
“SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Models.” ArXiv
Preprint. https://arxiv.org/abs/2211.10438.
Xie, Cihang, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and
Quoc V. Le. 2020. “Adversarial Examples Improve Image
Recognition.” In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, 816–25. IEEE. https://doi.org/10.1109/CVPR42600.2020.00090.
Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
2017. “Aggregated Residual Transformations for Deep Neural
Networks.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1492–1500.
Xinyu, Chen. n.d.
Xiong, Siyu, Guoqing Wu, Xitian Fan, Xuan Feng, Zhongcheng Huang, Wei
Cao, Xuegong Zhou, et al. 2021. “MRI-Based Brain
Tumor Segmentation Using FPGA-Accelerated Neural
Network.” BMC Bioinf. 22 (1): 421. https://doi.org/10.1186/s12859-021-04347-6.
Xiu, Liming. 2019. “Time Moore: Exploiting Moore’s Law from the Perspective of Time.”
IEEE Solid-State Circuits Mag. 11 (1): 39–55. https://doi.org/10.1109/mssc.2018.2882285.
Xu, Chen, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong
Wang, and Hongbin Zha. 2018. “Alternating Multi-Bit Quantization
for Recurrent Neural Networks.” In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=S19dR9x0b.
Xu, Hu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes,
Vasu Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph
Feichtenhofer. 2023. “Demystifying CLIP Data.”
ArXiv Preprint abs/2309.16671. https://arxiv.org/abs/2309.16671.
Xu, Zheng, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-Choo,
Peter Kairouz, H Brendan McMahan, Jesse Rosenstock, and Yuanbo Zhang.
2023. “Federated Learning of Gboard Language Models with
Differential Privacy.” ArXiv Preprint abs/2305.18465. https://arxiv.org/abs/2305.18465.
Yang, Tien-Ju, Yonghui Xiao, Giovanni Motta, Françoise Beaufays, Rajiv
Mathews, and Mingqing Chen. 2023. “Online Model Compression for
Federated Learning with Large Models.” In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1–5. IEEE; IEEE. https://doi.org/10.1109/icassp49357.2023.10097124.
Yik, Jason, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, Andreas
G. Andreou, Chiara Bartolozzi, Arindam Basu, et al. 2023.
“NeuroBench: Advancing Neuromorphic
Computing Through Collaborative, Fair and Representative
Benchmarking.” https://arxiv.org/abs/2304.04640.
You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus:
Understanding and Optimizing GPU Energy Consumption of
DNN Training.” In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), 119–39.
Boston, MA: USENIX Association. https://www.usenix.org/conference/nsdi23/presentation/you.
You, Yang, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer.
2018. “ImageNet Training in Minutes.” https://arxiv.org/abs/1709.05011.
Young, Tom, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
“Recent Trends in Deep Learning Based Natural Language Processing
[Review Article].” IEEE Comput. Intell.
Mag. 13 (3): 55–75. https://doi.org/10.1109/mci.2018.2840738.
Yu, Yuan, Martı́n Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy
Davis, Jeff Dean, et al. 2018. “Dynamic Control Flow in
Large-Scale Machine Learning.” In Proceedings of the
Thirteenth EuroSys Conference, 265–83. ACM. https://doi.org/10.1145/3190508.3190551.
Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
“Q8BERT: Quantized 8Bit
BERT.” In 2019 Fifth Workshop on Energy
Efficient Machine Learning and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), 36–39. IEEE; IEEE. https://doi.org/10.1109/emc2-nips53020.2019.00016.
Zeiler, Matthew D. 2012. “Reinforcement and Systemic Machine
Learning for Decision Making.” Wiley. https://doi.org/10.1002/9781118266502.ch6.
Zennaro, Marco, Brian Plancher, and V Janapa Reddi. 2022.
“TinyML: Applied AI for
Development.” In The UN 7th Multi-Stakeholder Forum on
Science, Technology and Innovation for the Sustainable Development
Goals, 2022–05.
Zhang, Chen, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Optimizing Cong. 2015. “FPGA-Based Accelerator Design
for Deep Convolutional Neural Networks Proceedings of the 2015
ACM.” In SIGDA International Symposium on
Field-Programmable Gate Arrays-FPGA, 15:161–70.
Zhang, Dan, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. “A Full-Stack Search
Technique for Domain Optimized Deep Learning Accelerators.” In
Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, 27–42. ASPLOS ’22. New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3503222.3507767.
Zhang, Dongxia, Xiaoqing Han, and Chunyu Deng. 2018. “Review on
the Research and Practice of Deep Learning and Reinforcement Learning in
Smart Grids.” CSEE Journal of Power and Energy Systems 4
(3): 362–70. https://doi.org/10.17775/cseejpes.2018.00520.
Zhang, Li Lyna, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu.
2020. “Fast Hardware-Aware Neural Architecture Search.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE. https://doi.org/10.1109/cvprw50498.2020.00354.
Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly Wearable
Cuff-Less Blood Pressure and Heart Rate Monitoring with Single-Arm
Electrocardiogram and Photoplethysmogram Signals.” BioMedical
Engineering OnLine 16 (1): 23. https://doi.org/10.1186/s12938-017-0317-z.
Zhang, Tunhou, Hsin-Pai Cheng, Zhenwen Li, Feng Yan, Chengyu Huang, Hai
Helen Li, and Yiran Chen. 2020. “AutoShrink: A
Topology-Aware NAS for Discovering Efficient Neural
Architecture.” In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, the
Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, the Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020,
6829–36. AAAI Press. https://aaai.org/ojs/index.php/AAAI/article/view/6163.
Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based
Remote Power Side-Channel Attacks.” In 2018 IEEE Symposium on
Security and Privacy (SP), 229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.00049.
Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. 2018. “Federated Learning with Non-Iid Data.”
ArXiv Preprint abs/1806.00582. https://arxiv.org/abs/1806.00582.
Zhou, Bolei, Yiyou Sun, David Bau, and Antonio Torralba. 2018.
“Interpretable Basis Decomposition for Visual Explanation.”
In Proceedings of the European Conference on Computer Vision
(ECCV), 119–34.
Zhou, Chuteng, Fernando Garcia Redondo, Julian Büchel, Irem Boybat,
Xavier Timoneda Comas, S. R. Nandakumar, Shidhartha Das, Abu Sebastian,
Manuel Le Gallo, and Paul N. Whatmough. 2021.
“AnalogNets: Ml-hw
Co-Design of Noise-Robust TinyML Models and Always-on
Analog Compute-in-Memory Accelerator.” https://arxiv.org/abs/2111.06503.
Zhou, Guanglei, and Jason H Anderson. 2023. “Area-Driven FPGA
Logic Synthesis Using Reinforcement Learning.” In Proceedings
of the 28th Asia and South Pacific Design Automation Conference,
159–65.
Zhu, Hongyu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand
Jayarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko.
2018. “Benchmarking and Analyzing Deep Neural Network
Training.” In 2018 IEEE International Symposium on Workload
Characterization (IISWC), 88–100. IEEE; IEEE. https://doi.org/10.1109/iiswc.2018.8573476.
Zhu, Ligeng, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang, Chuang
Gan, and Song Han. 2023. “PockEngine:
Sparse and Efficient Fine-Tuning in a Pocket.” In
56th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM. https://doi.org/10.1145/3613424.3614307.
Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. “A Comprehensive Survey on
Transfer Learning.” Proceedings of the IEEE 109 (1):
43–76. https://doi.org/10.1109/JPROC.2020.3004555.
Zoph, Barret, and Quoc V. Le. 2023. “Cybernetical
Intelligence.” Wiley. https://doi.org/10.1002/9781394217519.ch17.